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Randomized Quantile Residuals

Peter K. Dunn and Gordon K. Smyth*
Department of Mathematics, University of Queensland,
Brisbane, Q 4072, Australia.

September 28, 1995

Abstract

In this paper we give a general definition of residuals for regression models
with independent responses. Our definition produces residuals which are exactly
normal, apart from sampling variability in the estimated parameters, by inverting '
the fitted distribution function for each response value and finding the equivalent
standard normal quantile. Our definition includes some randomization to achieve
continuous residuals when the response variable is discrete. Quantile residuals are
easily computed in computer packages such as SAS, S-Plus, GLIM or LispStat, and
allow residual analyses to be carried out in many commonly occurring situations in
which the customary definitions of residuals fail. Quantile residuals are applied in
this paper to three example data sets.

Keywords: generalized linear model; deviance residual; Pearson residual; exponen-
tial regression; logistic regression; Poisson regression; normal probability plot.

1 Introduction

Residuals, and especially plots of residuals, play a central role in the checking of statistical
models. In normal linear regression the residuals are normally distributed and can be
standardized to have equal variances. In non-normal regression situations, such as logistic
regression or log-linear analysis, the residuals, as usually deﬁned, may be so far from
norma,lity and from having equal variances as to be of no practical use. A particular

problem occurs when the response variable is discrete and takes on a small number of

*Current address Department of Operations Research, Naval Postgraduate School, Monterey, CA
93943




distinct values. as for Poisson data with mean not far from zero or binomial data with
mean close to either zero or the number of trials. In such situations the residuals lie
on parallel curves corresponding to distinct response values, and these spurious curves
distract the eye seriously from any meaningful message that might be contained in a
residual plot.

In this paper we give a general definition of residuals for regression models with in-
dependent responses. Qur definition produces residuals which are exactly normal, apart
from sampling variability in the estimated parameters, by inverting the fitted distribution
function for each response value and finding the equivalent standard normal quantile.
This approach is closely related to that of Cox and Snell (1968), but whereas Cox and
Snell concentrate on mean and variance corrections we concentrate on the transformation
to normality. Our definition includes some randomization to achieve continuous residuals
when the response variable is discrete. Quantile residuals are easily computed in com-
puter packages such as SAS, S-Plus, GLIM or LispStat,_ and allow residual analyses to be
carried out in-many commonly occurring situations in which the customary definitions of
residuals fail.

For other work on residuals for non-normal regression models see Pierce and Schafer
(1986) or McCullagh and Nelder (1989) and the references therein. In the discussion at
the end of the paper we briefly indicate how quantile residuals may be extended to models

with dependent responses.

2 Pearson and Deviance Residuals

Let y1,...,y, be responses and for each 7 let x; be a vector of covariates. The y; are
assumed to be independent and to follow a distribution P(u:, @) where p; = E(y:) and
¢ is a parameter vector common to all the y;. The y; are assumed to depend on the x;

and a vector of regression parameters 3. We have particularly in mind generalized linear




models (McCullagh and Nelder, 1989) in which the probability density or mass function

of y; has the form
fy;0:,6) = aly, ¢) exp[{yb; — (6:)}/ 4]

where a() and () are known functions and p; = £'(6;). In this model we have var(y;) =
oV (u;) where V(u;) = £"(6;). It is customary to assume that g(u:) = xT3 where g()
is a known link function. The parameter ¢ is the proportionality constant in the mean-
variance relationship and is known as the dispersion parameter.

In the context of generalized linear models, two definitions of residuals have been

commonly used in practice. The Pearson residual is defined by

Yi — [

Tp,i VT
where j; is the fitted value for y;. The Pearson residual has the advantage that its rﬁean
and variance are exactly zero and ¢ respectively, if sampling variability in j; is small.
The deviance ;esiduals are defined in terms of the unit deviances. For the above model,

let t{y,p) = y0 — k(). Assuming that y is in the domain of y, the unit deviance is

d(y, p) = 2{t(y,y) — t(y, )}

The deviance residual is
| rag = d(ys, i) *sign(yi — fbi)

Pierce and Schafer (1986) have argued on theoretical grounds that the deviance residuals
should be more nearly normal than the Pearson. Indeed both convergé to normality as
¢ — 0 relative to the y;, the Pearson residuals at rate O(¢'/2) by the Central Limit The-
orem and the deviance residuals at O(¢) by the saddle-point approximation to f(y; i, ¢).
The Pearson and deviance residuals coincide and are exactly normal, ignoring variability
in ji;, for the normal linear rhodel. The deviance residual is also exactly normal when the

response is inverse-Gaussian. In other cases and for large ¢/mu however, neither type




of residual can be guaranteed to be closely normal, and the deviance residuals do not

generally have zero means or equal variances even at the true values y,.

3 Randomized Quantile Residuals

Let F(y: pi, ) be the cumulative distribution function of P(u;, ¢). If F is continuous, the

quantile residuals are defined by
res = @ F(ys; fui, 6)}

where ®() is the cumulative distribution function of the standard normal. Apart sampling
variability in f; and <2>, the r,; are exactly standard normal. This is implies that the
distribution of r,; converges to standard normal if 3 and ¢ are consistently estimated.

The above definition is a special case of Cox and Snell’s (1968) “crude” residuals.

Ezamplel: Leukemia data. Feigl and Zelen (1965) discuss some data relating the survival
times y; of leukemia patients to their initial white blood cell counts z; and to existence
of AG-factor. Following Feigl and Zelen, we treat the survival times as exponential, y; ~
Exp(p:). We work with a log-linear model for the means, including separate intercepts

for the two AG-factor groups,

log g =4 AT Blogz; AG positive
O8H = a;+Blogz:  AG negative

Cox and Snell (1968) considered a subset of this data, and defined approximately expo-
nential crude residuals R; = y;/i;, where the [i; are the estimated means. In this case the
quantile residuals

roi = @7 {1 — exp(y:/iu:)}
are a simple transformation of the R;. A normal probability plot of the quantile residu-

als confirms the assumption of an exponential distribution. Figure 1 plots the quantile

residuals versus the covariate. The three residuals (cases 17, 31 and 33) in the upper
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Figure 1: Plot of quantile residuals versus the covariate for the leukemia data. Circles
represent patients which are AG-positive, crosses AG-negative.
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right-hand corner of the plot are relatively separate from the body of the other residuals,
and without them there appears to be a marked negative trend. Cases 17, 31 and 33
may be outliéfs, or it may be that the dispersion of the residuals increases at the largest
white blood cell counts. In any case, the three cases identified appear from the residual
plot to be jointly influential. Assigning the identified cases zero weight increases ﬁ nearly

three-fold, from -0.30 to -0.84 compared with a standard error of 0.14.

If F is not continuous, a more general definition of quantile residuals is required. Let
a; = limyry, F(y; i, #) and b; = F(yi; fti, ). We define the randomized quantile residual
for y; by
rei =07 (u)
where w; is a uniform random variable on the interval (a;, b;]. Again, the ry; are exactly
standard normal, apart sampling variability in j; and #. The randomization strategy em-
ployed here is similar to the strategy of jittering (Chambers et al, 1983) to prevent masses

of overlapping points in plots. Whereas jittering applies a uniform random component to
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Figure 2: Deviance and quantile residuals versus the covariate from a logistic regression.
The response is simulated bin(3, p) with logit p depending quadratically on the covariate.
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the response, our uniform random component is on the cumulative probability scale and is
tailored to the actual probability mass at the point in question. Our randomization is the
minimum necessary so that no granularity remains in the resulting residual distribution.

Ezample 2: Simulated binomial data. A logistic linear regression was used to model 60
binomial observations with binomial denominator n = 3, i.e., the responses were assumed
to be independently distributed as y; ~ bin(n, p;), with n = 3 and logit(p;) = 8o + Biz:
were z; is a covariate. The first plot of Figure 2 displays the deviance residuals versus
the covariate. The points in this plot lie on four parallel curves corresponding to the four
possible value for the response. The curves make it difficult to see any other pattérn in
the data. The second plot displays the quantile residuals versus the covariate. In this
plot is clear that the residuals follow a quadratic pattern. The data for this example was
in fact computer generated with logit(p;) depending quadratically on the z;.

Ezample 3: Fathers’ and sons’ occupations. Brown (1974) and Kotze and Hawkins
(1984) analyze a sparse 14 x 14 contingency table showing the cross-classification of oc-
cupations of fathers (rows) by occupations of sons (columns). The data was originally

published by Pearson (1904) and appears also in Hand et al (1994). Brown, Kotze and




Figure 3: Normal probability plot of the quantile residuals from the fathers” and sons’
occupation data.
Normal Probability Plot

3 .
2}
1.—
3
E of
9
2
2
S
]
70}
2k
3k x* 4
X
_4 i i A i i
3 2 1 0 1 2 3

Normal Deviates

Hawkins were interested in identifying those cells which are outliers relative to the inde-
pendence model. We take a similar approach, with the difference that the quantile residual
approach a.lloWs us to look for outliers relative to a more realistic model. Observing that
there is an apriori expectation that sons will be influenced by their father’s occupation,
we fit a log-linear Poisson regression model to the counts with row and column effects and

with an effect for equality of father’s and son’s occupation, i.e., yi; ~ Pois(u;;), with
log pij = po + ai + B + 6zi; | (1)

and z;; = 1 if i = j and 0 otherwise. Figure 3 is a normal probability plot of quantile
residuals from this model. The largest positive residual corresponds to the (2,2) cell: sons
almost always continue to work in the Arts if their father did. Figure 3 shows evidence of
large negative residuals as well as large positive residuals. Although none of the negative
residuals are individually significant, and the actual contingency table cells represented in
the left tail of the probability plot varies with each realization of the quantile residuals, the

overall pattern is preserved across realizations. The quantile residual plot shows in this
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way that there are too many zero counts in the contingency table to be compatible with
the above model. No other method which has been applied to this data in the literature
is able to show this aspect of the data. Although Figure 3 shows clear evidence of lack
of fit, the model (1) and the models which arise from it by deleting selected cells does
give an appreciatably better fit to this data than the independence models considered by

earlier authors.

4 Discussion and Extensions

In this paper quantile residuals are computed by finding the equivalent standard normal
deviate for each response observation. Any reference distribution could have been chosen
for the residuals, but the normal seems to be the easiest to interpret for graphical purposes.

Randomization is used to produce continuouslsl distributed residuals when the re-
sponse is discrete or has a discrete component. This means that the quantile residuals
will vary from one realization to another for a given data set and fitted model. For the
sake of brevity, we have given only one realization of the quantile residuals for each ex-
ample in this paper. In practice though we have found it useful to routinely plot four
realizations of the quantile residuals. Any pattern in the residuals which is not consistent
across the realizations is then ignored.

Quantile residuals provide a logical approach to added variable plots (Cook and Weis—
berg, 1982) in generalized linear models. An added variable plot for a variable z would
consist of plotting the quantile residuals, for the model excluding z, versus z,, where z,
is z adjusted for the other covariates in the model. The vector r, would be chosen to be
orthogonal to the other covariates, relative to the covariance matrix of the y;. It might
be computed as the residuals from weighted least squares regression of z on the other
covariates, using as weights the working weights from the generalized linear model.

Independence of the response observations was assumed in this paper. The method




of quantile residuals can be extended to dependent data situations by expressing the
multivariate likelihood as a sum of univariate conditional likelihoods. For example we
might define the ith conditional quantile residual from the conditional distribution of y;
given y1, ..., yn instead of from the marginal distribution of y; as in the paper. This would
provide independent, standard normal residuals.

Finally we consider the sampling variability of the f;, which has for simplicity been
ignored throughout this paper. Treating the f; as fixed is appropriate when good in-
formation is available on the model parameters, but may be unrealistic for example for
designed experiments in which the number of parameters is not small compared to the
number of observations. In normal linear models, REML estimate of the variance struc-
ture is obtained from the marginal distribution of any set of zero mean contrasts, Z7y
say. In a similar way, independent and identically distributed residuals could be obtained
by transforming from the y; to any orthonormal set of zero mean constrasts.

Extending this idea to non-normal regression is more difficult, but could in principle
be done using-the conditional approach of Smyth and Verbyla (1995). Smyth and Verbyla
(1995) have argued that REML estimation for generalized linear models should proceed by
considering the conditional distribution of the y; given ﬂ . Independent quantile residuals
could therefore be defined by considering the conditional distribution of each y; given
y1,...,yi-1 and B. For certain values of ¢ this distribution would be degenerate; these

values could be ignoi'ed without loss of information.
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